66 research outputs found

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32

    Stable causality of Black Saturns

    Get PDF
    We prove that the Black Saturns are stably causal on the closure of the domain of outer communications.Comment: 10 page

    A regularisation approach to causality theory for C^{1,1}Lorentzian metrics

    No full text
    We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to C^{1,1}. Our approach is based on regularisations of the metric adapted to the causal structure

    The EROS2 search for microlensing events towards the spiral arms: the complete seven season results

    Get PDF
    The EROS-2 project has been designed to search for microlensing events towards any dense stellar field. The densest parts of the Galactic spiral arms have been monitored to maximize the microlensing signal expected from the stars of the Galactic disk and bulge. 12.9 million stars have been monitored during 7 seasons towards 4 directions in the Galactic plane, away from the Galactic center. A total of 27 microlensing event candidates have been found. Estimates of the optical depths from the 22 best events are provided. A first order interpretation shows that simple Galactic models with a standard disk and an elongated bulge are in agreement with our observations. We find that the average microlensing optical depth towards the complete EROS-cataloged stars of the spiral arms is τˉ=0.51±.13×106\bar{\tau} =0.51\pm .13\times 10^{-6}, a number that is stable when the selection criteria are moderately varied. As the EROS catalog is almost complete up to IC=18.5I_C=18.5, the optical depth estimated for the sub-sample of bright target stars with IC<18.5I_C<18.5 (τˉ=0.39±>.11×106\bar{\tau}=0.39\pm >.11\times 10^{-6}) is easier to interpret. The set of microlensing events that we have observed is consistent with a simple Galactic model. A more precise interpretation would require either a better knowledge of the distance distribution of the target stars, or a simulation based on a Galactic model. For this purpose, we define and discuss the concept of optical depth for a given catalog or for a limiting magnitude.Comment: 22 pages submitted to Astronomy & Astrophysic

    Theorems on existence and global dynamics for the Einstein equations

    Get PDF
    This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living Rev. Rel. 5 (2002)

    Isolated and dynamical horizons and their applications

    Get PDF
    Over the past three decades, black holes have played an important role in quantum gravity, mathematical physics, numerical relativity and gravitational wave phenomenology. However, conceptual settings and mathematical models used to discuss them have varied considerably from one area to another. Over the last five years a new, quasi-local framework was introduced to analyze diverse facets of black holes in a unified manner. In this framework, evolving black holes are modeled by dynamical horizons and black holes in equilibrium by isolated horizons. We review basic properties of these horizons and summarize applications to mathematical physics, numerical relativity and quantum gravity. This paradigm has led to significant generalizations of several results in black hole physics. Specifically, it has introduced a more physical setting for black hole thermodynamics and for black hole entropy calculations in quantum gravity; suggested a phenomenological model for hairy black holes; provided novel techniques to extract physics from numerical simulations; and led to new laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte

    Black Holes in Higher Dimensions

    Get PDF
    We review black hole solutions of higher-dimensional vacuum gravity, and of higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers-Perry solutions, black rings, and solution-generating techniques. We discuss black hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.Comment: 76 pages, 14 figures; review article for Living Reviews in Relativity. v2: some improvements and refs adde

    Quantization of Midisuperspace Models

    Get PDF
    We give a comprehensive review of the quantization of midisuperspace models. Though the main focus of the paper is on quantum aspects, we also provide an introduction to several classical points related to the definition of these models. We cover some important issues, in particular, the use of the principle of symmetric criticality as a very useful tool to obtain the required Hamiltonian formulations. Two main types of reductions are discussed: those involving metrics with two Killing vector fields and spherically symmetric models. We also review the more general models obtained by coupling matter fields to these systems. Throughout the paper we give separate discussions for standard quantizations using geometrodynamical variables and those relying on loop quantum gravity inspired methods.Comment: To appear in Living Review in Relativit
    corecore